FACULTY OF ECONOMICS
AND BUSINESS ADMINISTRATION

OPERATIONS RESEARCH

Prof. dr. Broos Maenhout

Department of Business Informatics and Operations Management

Course outline

0. Practical Information - Course overview
1. Introduction to Operations Research
2. Linear Programming: Introduction
a. Modelling Linear Programming Problems
b. The Graphical Solution Method
3. Linear Programming: The Simplex Method
4. Linear Programming: Duality Theory
5. Linear Programming: Sensitivity Analysis
6. Linear Programming: Multi-Criteria Decision Making
7. Linear Programming: Special Cases
a. The Transportation Problem
b. The Assignment Problem
c. The Transshipment Problem
8. Network Optimisation Problems
9. Integer Programming
a. Modelling and Solving of Integer Programming Problems
b. Constraint Programming
10. Nonlinear Programming
11. Dynamic Programming
12. Decision Analysis
13. Game Theory
14. Markov Chains

CHAPTER

LINEAR PROGRAMMING THE SIMPLEX METHOD

LINEAR PROGRAMMING PROBLEMS

THE SIMPLEX METHOD

Outline

Introduction

Linear Programming Formulation
Solution Method

- The Graphical Solution Method
- The Spreadsheet Solution Method
- The Simplex Method

Duality Theory

Sensitivity Analysis

Outline

The Simplex Method: The Principles
Setting Up the Simplex Method

- Standard Form
- Canonical Form
- The Simplex Tableau

The Algebra of the Simplex Method

- The Simplex Method
- Determine the entering variable
- Determine the leaving variable
- Generate the next simplex tableau

Special cases
Two-Phase Method

The Simplex Method: The Principles

Terminology

Constraint boundary

$$
x_{1}=6 ; 2 x_{1}+3 x_{2}=19 ; x_{1}+x_{2}=8 ; x_{1}=0 ; x_{2}=0
$$

Corner-point solutions
For a linear programming problem with n decision variables, each of the corner-point solutions lies at the intersection of n constraint boundaries

Corner-point feasible solutions (CPF solutions)

- The points that lie on the corners of the feasible region (cfr (o, o); $\left.(6,0) ;(6,2) ;(5,3) ;\left(0,6_{1 / 3}\right)\right)$

Corner-point infeasible solutions

- $\operatorname{Cfr}(0,8) ;(8,0) ;(6,21 / 3)$

The Simplex Method: The Principles

Terminology

Adjacent corner-point solutions

For a linear programming problem with n decision variables, two CPF solutions are adjacent to each other if they share $n-1$ constraint boundaries.

They are connected by a line segment or an edge of the feasible region (on the same shared constraint boundaries)
E.g. $(0,0)$ and $(6, o)$ share the constraint boundary $x_{2}=0$.

Very useful concept in checking the optimality of a CPF solution.

The Simplex Method: The Principles

Optimality Test

If a CPF solution has no adjacent CPF solutions that are better, then it must be an optimal solution.
E.g. $(5,3)$ must be an optimal solution
$(5,3)>Z=46$
$(6,2)>Z=44$
$(0,61 / 3)>Z=441 / 3$

The Simplex Method: The Principles

The Simplex Method: The Principles

The Simplex Method: The Principles

The Simplex Method: The Principles

Method

The Simplex Method: The Principles

The Simplex Method: The Principles

Method

The Simplex Method: The Principles

The Simplex Method: The Principles

Method

The Simplex Method: The Principles

The Simplex Method: The Principles

Method

Optimality Test

$-(5,3)$ is the optimal solution as no adjacent solutions are better.

$$
x_{1} \leq 6
$$

The Simplex Method: The Principles

Key Solution Concepts

Solution concept 1: The simplex method focuses solely on CPF solutions.

Solution concept 2: The simplex method is an iterative algorithm with the following structure.

Set up to start iterations, including finding an initial CPF solution

Is the current CPF solution optimal? If yes, STOP

Perform an iteration to find a better CPF solution

The Simplex Method: The Principles

Key Solution Concepts

Solution concept 3: Whenever possible, the initialisation of the simplex method chooses the origin (all the decision variables are equal to zero) to be the initial CPF solution.

Solution concept 4: Given a CPF solution, it is much easier to gather information about the adjacent CPF solutions than about other CPF solutions.

The Simplex Method: The Principles

Key Solution Concepts

Solution concept 5: The choice of the next adjacent CPF solution is dependent on the rate of improvement in Z that would be obtained by moving along the edge.

Among the edges with a positive rate of improvement in Z, the edge with the largest rate of improvement is chosen.

Solution concept 6: Optimality test boils down to checking the rate of improvement along the edges.

A positive rate of improvement in Z implies that the adjacent CPF solution is better than the current CPF solution.
A negative rate of improvement in Z implies that the adjacent CPF solution is worse.
If no rates of improvement in Z are positive, the current CPF solution is optimal.

Setting Up the Simplex Method

Preparation and initialization
Step 1. Put the original problem formulation into standard form

Step 2. Select the origin as initial basic solution

Step 3. Put the standard form into canonical form

Setting Up the Simplex Method

Standard Form

Convert the functional inequality constraints to equivalent equality constraints by transposing the LP formulation to standard form.
A linear program in which all the variables are non-negative and all the constraints are equalities is said to be in standard form (or augmented form).
Standard form is attained by
adding slack variables to 'less than or equal to' constraints
subtracting surplus variables from 'greater than or equal to' constraints.
Slack and surplus variables represent the difference between the left and right sides of the constraints.

If a slack variable is equal to o, the current solution lies at the constraint boundary of the functional constraint.
If a slack variable is greater than o , the current solution lies on the feasible side of the constraint boundary
Slack and surplus variables have objective function coefficient equal to 0 .

Setting Up the Simplex Method

Mathematical Problem Formulation

Maximize $\quad c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}$
subject to

$$
\begin{gathered}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n} \leq b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n} \leq b_{2} \\
\ldots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n} \leq b_{m} \\
x_{1} \geq o, x_{2} \geq o, \ldots, x_{n} \geq o
\end{gathered}
$$

Setting Up the Simplex Method

Standard Mathematical Problem Formulation

$$
\text { Maximize } \quad c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}+O s_{1}+O s_{2}+\ldots+O s_{m}
$$

subject to

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}+s_{1}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}+s_{2}=b_{2} \\
& \ldots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}+s_{m}=b_{m} \\
& x_{1} \geq 0, x_{2} \geq 0, \ldots, x_{n} \geq 0, s_{1} \geq 0, \ldots, s_{m} \geq 0
\end{aligned}
$$

Setting Up the Simplex Method

Standard Form
Example LP Formulation

Maximize	$3 x_{1}+$	$5 x_{2}$	
subject to	x_{1}		≤ 4
		$2 x_{2}$	≤ 12
	$3 x_{1}+$	$2 x_{2}$	≤ 18
	$x_{1} \geq 0$,	$x_{2} \geq 0$	

Setting Up the Simplex Method

Standard Form
Example LP Formulation Maximize $\quad 100 x_{1}+200 x_{2}$ subject to

$2 x_{1}+$	$3 x_{2}$	≤ 2000
x_{1}		≥ 60
	x_{2}	≤ 720
	x_{2}	≥ 0

Setting Up the Simplex Method

Standard Form

Example LP Formulation

Minimize	$100 x_{A}+80 x_{B}$	
subject to	$2 x_{A}-$	x_{B}

Setting Up the Simplex Method

Basic Solutions

A basic solution is an augmented corner-point solution (and includes slack variable values).

A basic feasible solution is an augmented CPF solution.
E.g. corner point (6, 0) refers to the basic solution ($6,0,0,7,2$)

The LP problem has:
$\left.\begin{array}{l}(n+m) \text { variables: } n \text { decision variables }+m \text { slack variables } \\ m \text { equations }\end{array}\right] \quad$ Degrees of freedom $=n$

In a basic solution, there is one basic variable for each functional constraint. The number of nonbasic variables equals the total number of variables minus the number of functional constraints. All other variables, the non-basic variables, are zero.

Setting Up the Simplex Method

Basic Solutions

If we set n of the ($n+m$) variables to zero, then we have a system with m (basic) variables and m equations, which can be solved using linear algebra. The resulting solution is called a basic solution.

Number of possible basic solutions: $\binom{n+m}{m}$

The n variables equal to zero are the 'non-basic' variables, the m non-zero variables are the 'basic' variables.

Setting Up the Simplex Method

Basic Solutions

Putting non-basic variables to zero takes us to a corner of the feasible region (i.e. where the optimal solution might be found).

Giving non-zero values to non-basic variables takes us away from the corners of the feasible region, which is not useful.

Example

Setting Up the Simplex Method

Adjacent Basic Solutions

Two basic solutions are adjacent if all but one of their nonbasic variables are the same. E.g. (6, o, o, 7, 2) and ($0,0,6,19,8$).

Moving from one basic solution to another involves switching one variable from nonbasic to basic and vice versa for another variable.
E.g. From ($0,0,6,19,8$) to ($6,0,0,7,2$) involves switching x_{1} from nonbasic to basic.

Example: $(6,0,0,7,2)$ is a basic solution
Augment the CPF solution (6,0)
Choose x_{2} and s_{1} as nonbasic variables and set these variables equal to zero. Solve the following set of equations to find the corresponding basic solution:

(1) $x_{1}+s_{1}=6$	\rightarrow	$x_{1}=6$
(2)	$2 x_{1}+3 x_{2}+s_{2}=19$	\rightarrow
(3)	$x_{1}+x_{2}+s_{3}=8$	\rightarrow

Setting Up the Simplex Method

Canonical Form

A set of equations is in canonical form (or proper form of Gaussian elimination) if for each equation, its right hand side is non-negative, and there is a single basic variable in the equation.

A variable is basic if it appears in only one of the constraint equations, with coefficient 1. The right-hand side of that equation then immediately gives the value of the basic variable.

Setting Up the Simplex Method

Canonical Form

What if the origin is infeasible wrt functional constraints?
Introduction of artificial variables

- Artificial variables are added to all "at-least" and "equal-to" constraints. These artificial variables are then selected as initial basic variables when setting up the simplex method.
- For "at-most" constraints, the slack variables are a suitable basic variable.
- For "at least" constraints, the surplus variables cannot be used as basic variables, because the right-hand side would be negative. The artificial variable corresponds to a slack variable, but on "the wrong side" of the constraint.
- For "equal to" constraints, no immediate basic variable is available. The artificial variable also corresponds to a slack variable, i.e. the deviation from the equality.

Artificial variables and infeasibility
This means that, as long as any of the artificial variables is non-zero (and basic), the current solution is not acceptable or infeasible.

Therefore, in solving the problem, all artificial variables must become non-basic (zero) first.

- Big-M method: coefficient of +M in the objective function for a minimisation problem. coefficient of -M in the objective function for a maximisation problem.
- Two-phase method: first minimize the sum of all artificial variables, afterwards optimize the original objective function (cfr. Infra)

Setting Up the Simplex Method

Canonical Form
Example Standard Form

Maximize	$100 x_{1}+200 x_{2}$						
subject to	$2 x_{1}+$	$3 x_{2}$	$+s_{1}$		$=2000$		
	x_{1}			$-s_{2}$	$=60$		
		x_{2}					
	x_{1}	,	x_{2}	,s_{1}	,s_{2}	,s_{3}	≥ 0

Setting Up the Simplex Method

Canonical Form
Example Standard Form
Minimize $\quad 100 x_{A}+80 x_{B}$
subject to $2 x_{A}-\quad x_{B}-s_{1}=0$
$\begin{array}{llll}x_{A}+ & x_{B} & & -s_{2}=1000 \\ x_{A}, & x_{B}, & s_{1}, & s_{2} \geq 0\end{array}$

Algebra of the Simplex Method

Rewriting the Linear Functions (Jordan-Gauss elimination)

Using linear algebra, the m constraints can be rewritten such that only one of the m basic variables appears in each constraint.

To do so, so-called elementary row operations can be used:
multiplying an equation by a non-zero number
adding (subtracting) any other equation, multiplied by a non-zero number

Each of the m constraints then gives:
the value of one of the basic variables
an expression of the basic variable in terms of non-basic variables
Similarly, using elementary row operations, the objective function can be written as a constraint in terms of non-basic variables. E.g. Z-5 $x_{1}-7 x_{2}=0$

No slack variable is needed as the objective function is written as an equation.
One equation and one unknown variable is added.
Solving the set of functional equations leads to solving the value Z .

Algebra of the Simplex Method

Rewriting the Linear Functions

Example: Initialisation step: Select the origin as initial CP solution Select basic variables: s_{1}, s_{2} and s_{3}.
Non-basic variables: $x_{1}=0$ and $x_{2}=0$.
Rewrite the constraints and objective function:
$Z-5 x_{1}-7 x_{2}=0$
s.t.
$s_{1}=6-x_{1}$
or
$x_{1}+s_{1}=6$
$s_{2}=19-2 x_{1}-3 x_{2}$
or $\quad 2 x_{1}+3 x_{2}+s_{2}=19$
$s_{3}=8-x_{1}-x_{2}$
or $\quad x_{1}+x_{2}+s_{3}=8$

Initial BF solution is ($0,0,6,19,8$)

Algebra of the Simplex Method

Iteration: Optimality Test

The revised expression of the objective function (c_{i}) immediately tells us whether increasing a non-basic variable can improve the objective function value.

If not, the current solution is the optimum.
If so, increasing that non-basic variable takes us out of the corner point, along the boundary of the feasible region.

Example: Iteration 1
The Z-row gives the rate of improvement in Z if a variable is increased from zero.
$x_{1}: 5>0$ and $x_{2}: 7>0$ which indicates that the initial solution is not optimal.

Algebra of the Simplex Method

Iteration: Movement

Direction (= Determine the entering variable): Increasing a non-basic variable affects the values of the basic variables. This can easily be determined from the rewritten constraints.

Example: Iteration 1
$Z=5 x_{1}+7 x_{2}$

Increase x_{1} ? Rate of improvement in $\mathrm{Z}=5$
Increase x_{2} ? Rate of improvement in $\mathrm{Z}=7$
$7>5$, so choose x_{2} to increase.

Algebra of the Simplex Method

Iteration: Movement

Stop (= Determine the leaving variable):
Go as far as possible without leaving the feasible region.
Increasing the entering variable changes the values of some of the basic variables (cfr functional constraints).

Example: Iteration 1
$x_{1}+s_{1}=6$
or
or $\quad s_{2}=19-3 x_{2}$
$x_{1}+x_{2}+s_{3}=8$
or $\quad s_{3}=8-x_{2}$

Algebra of the Simplex Method

Iteration: Movement

Stop (= Determine the leaving variable):
Check how far the entering variable can be increased without violating the nonnegativity constraints for the basic variables (cfr. nonnegativity constraints)
At a certain value of the non-basic variable, one of the basic variables will become zero (and become a non-basic variable).

Example: Iteration 1

$s_{1}=6$	$\operatorname{nolimit}$ on x_{2}	
$s_{2}=19-3 x_{2}$	$x_{2} \leq 61_{1 / 3}$	
$s_{3}=8-x_{2}$	$x_{2} \leq 8$	\rightarrow

x_{2} can be increased just to $61 / 3$ at which point s_{2} drops to 0 . Increasing x_{2} beyond would cause s_{2} to become negative, which would violate feasibility.

Algebra of the Simplex Method

Iteration: Solving for the new basic feasible solution
Then, a new corner point has been reached. The non-basic variable has become a basic variable (entering variable) and the basic variable whose value is zero has become a non-basic variable (leaving variable).

After selecting the entering variable and determining the leaving variable, the constraints and objective function have to be rewritten in terms of only non-basic variables.

Example (cfr. Next slide): Iteration 1

Then, the same procedure can be repeated.

Algebra of the Simplex Method

Example: Iteration 1
New BF solution

Nonbasic variables:
Basic variables:

Initial BF solution
$x_{1}=0, x_{2}=0$
$s_{1}=6, s_{2}=19, s_{3}=8$

New BF solution
$x_{1}=0, s_{2}=0$
$s_{1}=$?, $x_{2}=6_{1 / 3}, s_{3}=$?

Rewrite the constraints and objective function to produce the pattern of coefficients of $s_{2}(0,0,1,0)$ as the new coefficients of x_{2} :
(1) $Z-5 x_{1}-7 x_{2}$
$=0$
$=6$
(3) $2 x_{1}+3 x_{2}+s_{2}=19$
(4) $x_{1}+x_{2}+\quad s_{3}=8$

Algebra of the Simplex Method

Example: Iteration 1
Turn the coefficient of x_{2} in eq. (3) into 1 by dividing this equation by 3 :

Turn the coefficient of x_{2} in eqs. (1) and (4) into o by the following operations:

$$
\text { eq. }(1)=\text { eq. }(1)+7 \times \text { eq. (3) } \quad \text { eq. }(4)=\text { eq. }(4)-1 \mathrm{x} \text { eq. (3) }
$$

Algebra of the Simplex Method

Optimality Test

Example: Iteration 2
The Z-row gives the rate of improvement in Z if a variable is increased from zero.
$x_{1}: 1 / 3>0$ and $s_{2}:-7 / 3<0$ which indicates that the initial solution is not optimal.

Z can be increased by increasing x_{1} and not s_{2}.

Algebra of the Simplex Method

Movement

Example: Iteration 2

Functional constraints
$x_{1}+s_{1}=6 \quad$ or
$2 / 3 x_{1}+x_{2}+1 / 3 s_{2}=61 / 3$ or $\quad x_{2}=61 / 3-2 / 3 x_{1}$
$1 / 3 x_{1} \quad-1 / 3 s_{2}+s_{3}=5 / 3 \quad$ or $\quad s_{3}=5 / 3-1 / 3 x_{1}$

Nonnegativity constraints
$s_{1}=6-x_{1} \quad x_{1} \leq 6$
$x_{2}=61 / 3-2 / 3 x_{1} \quad x_{1} \leq 19 / 2$
$s_{3}=5 / 3-1 / 3 x_{1} \quad x_{1} \leq 5 \quad \rightarrow \quad s_{3}$ is leaving variable
x_{1} can be increased just to 5 at which point s_{3} drops to 0 . Increasing x_{1} beyond would cause s_{3} to become negative, which would violate feasibility.

Algebra of the Simplex Method

Example: Iteration 2

New BF solution

Nonbasic variables:
Basic variables:

Initial BF solution
$x_{1}=0, x_{2}=61 / 3$
$s_{1}=6, s_{2}=0, s_{3}=5 / 3$

New BF solution
$s_{3}=0, s_{2}=0$
$s_{1}=$?, $x_{2}=$?, $x_{1}=5$

Rewrite the constraints and objective function to produce the pattern of coefficients of $s_{3}(0,0,0,1)$ as the new coefficients of x_{1} :

Algebra of the Simplex Method

Example: Iteration 2

Turn the coefficient of x_{1} in eq. (4) into 1 by multiplying this equation by 3 :

Turn the coefficient of x_{2} in eqs. (1), (2) and (3) into o by the following operations:
eq. (1) $=$ eq. (1) $+1 / 3 \times$ eq. (4) \quad eq. (2) $=$ eq. (2) $-1 \times$ eq. (4)
eq. (3) $=$ eq. (3) $-2 / 3 \times$ eq. (4)
(1) $Z+$

$$
\begin{aligned}
2 s_{2}+2 s_{3} & =46 \\
s_{1}+s_{2}-3 s_{3} & =1 \\
x_{2}+\quad s_{2}-2 s_{3} & =3
\end{aligned}
$$

$$
0
$$

(2)
(4) $x_{1} \quad-\quad s_{2}+3 s_{3}=5$

1
1
$>$ Since $x_{1}=5$ and $s_{2}=0$, new BF solution is ($5,3,1,0,0$)

The Simplex Method

Setting up the simplex method (cfr. supra)
Step 1: If the problem is a minimization problem, multiply the objective function by -1.
Step 2: If the problem formulation contains any constraints with negative right-hand sides, multiply each constraint by -1 .

Step 3: Put the problem into standard form
Add a slack variable to each \leq constraint.
Subtract a surplus variable and add an artificial variable to each \geq constraint.
Set each slack and surplus variable's coefficient in the objective function to zero.

Step 4: Select the origin as initial basic solution
Select the decision variables to be the initial nonbasic variables (set equal to zero).

The Simplex Method

Setting up the simplex method (cfr. Supra)
Step 5: Put the problem into canonical form
Add an artificial variable to each equality constraint and each \geq constraint.
Set each artificial variable's coefficient in the objective function equal to -M , where M is a very large number.
Each slack and artificial variable becomes one of the basic variables in the initial basic solution.

- All basic variables have a coefficient of 1
- There is 1 basic variable in each constraint
- Each basic variable appears in 1 constraint

Step 6: Rewrite the objective function in terms of non-basic variables only such that the entering basic variable can be easily determined. Hence, eliminate all basic variables from this row using elementary row operations.

The Simplex Method

Setting up the simplex method
The Simplex Tableau Form

	Variables x_{i}	RHS
	Trade ratios	
Basis	Exchange coefficients	
	$A_{i j}$	b_{i}

The coefficients of the variables
The constants on the right-hand side
The basic variable in each equation

The Simplex Method

The Simplex Tableau Form
Basis: The list of basic variables in the current solution. All variables not listed are the non-basic variables.
C_{i} : The net effect on the objective of bringing one unit of each variable into the basis

Amounts: list of amount of each basic variable and the total contribution of the current solution.

Exchange coefficients: The amount of each basic variable in the current solution that must be given up to get one unit on each variable in the linear program

Trade ratios: The maximum amounts of the entering variables that can be exchanged for the entire quantity of the basic variables

The Simplex Method

Perform an iteration of the simplex method
Step 1: Determine entering variable
Step 2: Determine leaving variable

Step 3:Generate next tableau

The Simplex Method

Step 1: Determine entering variable:
Identify the variable with the most negative value in the objective row. (The corresponding column j^{*} is the pivot column.)

If there are no negative values in the objective row, STOP.
If there is an artificial variable in the basis with a strict positive value on the RHS, the problem is infeasible.

Otherwise, an optimal solution has been found. The current values of the basic variables are optimal. The values of the non-basic variables are all zero.

If any non-basic variable's objective row value is o , alternate optimal solutions might exist.

The Simplex Method

Step 2: Determine leaving variable

For each positive number (>0) in the pivot column, compute the trade ratio: the righthand side value divided by the positive exchange coefficient in the pivot column.

If there are no positive values in the pivot column, STOP; the problem is unbounded.
Otherwise, select the variable with the smallest ratio. The basic for that row is the leaving basic variable. The corresponding row i^{*} is the pivot row.

The Simplex Method

Step 3: Generate New Tableau

The entering variable replaces the leaving variable in the basic variable column of the next simplex tableau. Solve for the new BF solution by using elementary row operations.

Divide the pivot row i^{*} by the pivot element $A_{i^{*} j^{*}}$ to get the new row i^{*} (the entry at the intersection of the pivot row and the pivot column).

Replace each non-pivot row i with:
$[$ new row $i]=[$ current row $i]-\left[\left(A_{i j^{*}}\right) \mathrm{x}\left(\right.\right.$ row $\left.\left.\mathrm{i}^{*}\right)\right]$
(with $a_{i j^{*}}$ is the value in entering column j^{*} of row i)
Replace the objective row with:
[new obj row] $=[$ current obj row $]-\left[\left(c_{j^{*}}\right) \mathrm{x}\left(\right.\right.$ row $\left.\left.i^{*}\right)\right]$
Return to step 1.

Example A

The Initial Simplex Tableau

Basic var	x_{G}	x_{W}	s_{1}	s_{2}	s_{3}	RHS
Z	-1.00	-1.35	0	0	0	0
s_{1}	2	4	1	0	0	500
s_{2}	1	0	0	1	0	200
s_{3}	0	1	0	0	1	120

Example A

Iteration 1

Step 1: Determine the Entering Variable

Basic var	x_{G}	x_{W}	s_{1}	s_{2}	s_{3}	RHS
Z	-1.00	-1.35	0	0	0	0
s_{1}	2	4	1	0	0	500
s_{2}	1	0	0	1	0	200
s_{3}	0	1	0	0	1	120

x_{W} is the variable with the most negative value in the objective row. x_{W} is the entering variable.

Example A

Iteration 1

Step 2: Determine the Leaving Variable
Take the ratio between the right hand side and the positive number in the x_{w} column

Basic var	x_{G}	$x_{\text {W }}$	s_{1}	s_{2}	s_{3}	RHS	
Z	-1.00	-1.35	-	-	-	\bigcirc	
s_{1}	2	4	1	\bigcirc	-	500	$500 / 4=125$
s_{2}	1	\bigcirc	\bigcirc	1	\bigcirc	200	-
s_{3}	0	1	0	-	1	120	120/1 $=120 \mathrm{MIN}$

s_{3} is the variable with the minimal ratio. s_{3} is the leaving variable and 1 is the pivot element

Basic var	x_{G}	x_{W}	s_{1}	s_{2}	s_{3}	RHS
Z	-1.00	-1.35	0	0	0	0
s_{1}	2	4	1	0	0	500
s_{2}	1	0	0	1	0	200
s_{3}	0	1	0	0	1	120

Example A

Iteration 1

Step 3: Generate New Tableau
Divide the third row (row i^{*}) by 1 (the pivot element) to get the new row i^{*}

Basic var	x_{G}	x_{W}	s_{1}	s_{2}	s_{3}	RHS
Z	-1.00	-1.35	0	0	0	0
s_{1}	2	4	1	0	0	500
s_{2}	1	0	0	1	0	200
s_{3}	0	1	0	0	1	120

Replace each non-pivot row i with [new row $i]=[$ current row $i]-\left[\left(A_{i i^{*}}\right) \mathrm{x}\left(\right.\right.$ row $\left.\left.\mathrm{i}^{*}\right)\right]$
[new row 1] = [current row 1] - 4 [row 3]
[new row 2] $=$ [current row 2] -0 [row 3]

Basic var	x_{G}	x_{W}	s_{1}	s_{2}	s_{3}	RHS
Z	-1.00	-1.35	0	0	0	0
s_{1}	2	0	1	0	-4	20
s_{2}	1	0	0	1	0	200
s_{3}	0	1	0	0	1	120

Example A

Iteration 1

Step 3: Generate New Tableau
Replace the objective row with:
[new obj row] = [current obj row] - [(-1.35) x (row 3)]

Basic var	x_{G}	x_{W}	s_{1}	s_{2}	s_{3}	RHS
Z	-1.00	0	0	0	1.35	162
s_{1}	2	0	1	0	-4	20
s_{2}	1	0	0	1	0	200
x_{W}	0	1	0	0	1	120

Example A

Iteration 2

Step 1: Determine the Entering Variable

Basic var	x_{G}	x_{W}	s_{1}	s_{2}	s_{3}	RHS
Z	-1.00	0	0	0	1.35	162
s_{1}	2	0	1	0	-4	20
s_{2}	1	0	0	1	0	200
x_{W}	0	1	0	0	1	120

x_{G} is the variable with the most negative value in the objective row. x_{G} is the entering variable.

Example A

Iteration 2

Step 2: Determine the Leaving Variable
Take the ratio between the right hand side and the positive number in the x_{G} column

| Basic var | x_{G} | x_{W} | s_{2} | s_{2} | s_{3} | RHS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| Z | -1.00 | 0 | 0 | 0 | 1.35 | 162 |

s_{1} is the variable with the minimal ratio. s_{1} is the leaving variable and 2 is the pivot element

Basic var	x_{G}	x_{W}	s_{1}	s_{2}	s_{3}	RHS
Z	-1.00	0	0	0	1.35	162
s_{1}	2	0	1	0	-4	20
s_{2}	1	0	0	1	0	200
x_{W}	0	1	0	0	1	120

Example A

Iteration 2

Step 3: Generate New Tableau
Divide the first row (row i^{*}) by 2 (the pivot element) to get the new row i^{*}

Basic var	x_{G}	x_{W}	s_{1}	s_{2}	s_{3}	RHS
Z	-1.00	0	0	0	1.35	162
s_{1}	1	0	$1 / 2$	0	-2	10
s_{2}	1	0	0	1	0	200
x_{W}	0	1	0	0	1	120

Replace each non-pivot row i with [new row $i]=[$ current row $i]-\left[\left(A_{i^{*}}\right) \times\left(\right.\right.$ row $\left.\left.i^{*}\right)\right]$
[new row 2] = [current row 2] - 1 [row 1]
[new row 3] = [current row 3] - o [row 1]

Basic var	x_{G}	x_{W}	s_{1}	s_{2}	s_{3}	RHS
Z	-1.00	0	0	0	1.35	162
s_{1}	1	0	$1 / 2$	0	-2	10
s_{2}	0	0	$-1 / 2$	1	2	190
x_{W}	0	1	0	0	1	120

Example A

Iteration 2

Step 3: Generate New Tableau
Replace the objective row with:
[new obj row] = [current obj row] - [(-1.00) x (row 1)]

Basic var	x_{G}	x_{W}	s_{1}	s_{2}	s_{3}	RHS
Z	0	0	$1 / 2$	0	-0.65	172
x_{G}	1	0	$1 / 2$	0	-2	10
s_{2}	0	0	$-1 / 2$	1	2	190
x_{W}	0	1	0	0	1	120

Example A

Iteration 3

Step 1: Determine the Entering Variable

Basic var	x_{G}	x_{W}	s_{1}	s_{2}	s_{3}	RHS
Z	0	0	$1 / 2$	0	-0.65	172
x_{G}	1	0	$1 / 2$	0	-2	10
s_{2}	0	0	$-1 / 2$	1	2	190
x_{W}	0	1	0	0	1	120

s_{3} is the variable with the most negative value in the objective row. s_{3} is the entering variable.

Example A

Iteration 3

Step 2: Determine the Leaving Variable

- Take the ratio between the right hand side and the positive number in the s_{3} column

Basic var	x_{G}	x_{W}	s_{1}	s_{2}	s_{3}	RHS
Z	0	0	$1 / 2$	0	-0.65	172
x_{G}	1	0	$1 / 2$	0	-2	10
s_{2}	0	0	$-1 / 2$	1	2	190
x_{W}	0	1	0	0	1	120

s_{2} is the variable with the minimal ratio. s_{2} is the leaving variable and 2 is the pivot element

Basic var	x_{G}	x_{W}	s_{1}	s_{2}	s_{3}	RHS
Z	0	0	$1 / 2$	0	-0.65	172
x_{G}	1	0	$1 / 2$	0	-2	10
s_{2}	0	0	$-1 / 2$	1	2	190
x_{W}	0	1	0	0	1	120

Example A

Iteration 3

Step 3: Generate New Tableau
Divide the second row (row i^{*}) by 2 (the pivot element) to get the new row i^{*}

Basic var	x_{G}	x_{W}	s_{1}	s_{2}	s_{3}	RHS
Z	0	0	$1 / 2$	0	-0.65	172
x_{G}	1	0	$1 / 2$	0	-2	10
s_{2}	0	0	$-1 / 4$	$1 / 2$	1	95
x_{W}	0	1	0	0	1	120

Replace each non-pivot row i with [new row $i]=[$ current row $i]-\left[\left(A_{i j^{*}}\right) \times\left(\right.\right.$ row $\left.\left.i^{*}\right)\right]$
$[$ new row 1] $=[$ current row 1] +2 [row 2]
[new row 3] = [current row 3] - 1 [row 2]

Basic var	x_{G}	x_{W}	s_{1}	s_{2}	s_{3}	RHS
Z	o	o	$1 / 2$	0	-0.65	172
x_{G}	1	0	0	1	0	200
s_{2}	0	0	$-1 / 4$	$1 / 2$	1	95
x_{W}	0	1	$1 / 4$	$-1 / 2$	0	25

Example A

Iteration 3

Step 3: Generate New Tableau
Replace the objective row with:
[new obj row] = [current obj row] - [0.65 x (row 2)]

Basic var	x_{G}	x_{W}	s_{1}	s_{2}	s_{3}	RHS
Z	o	o	$27 / 80$	$13 / 40$	0	233.75
x_{G}	1	0	0	1	0	200
s_{2}	0	0	$-1 / 4$	$1 / 2$	1	95
x_{W}	0	1	$1 / 4$	$-1 / 2$	0	25

Since there are no negative numbers in the objective row, this tableau is optimal.
The optimal solution is $\left(x_{\mathrm{G}}, x_{\mathrm{W}}, s_{1}, s_{2}, s_{3}\right)=(200,25,0,95,0)$
The optimal value of the objective function is 233.75 .

Example B

Mathematical Problem Formulation
Maximize $\quad 100 x_{1}+200 x_{2}$
subject to

$2 x_{1}+$	$3 x_{2}$	≤ 2000
x_{1}		≥ 60
	x_{2}	≤ 720
x_{1},	x_{2}	≥ 0

Canonical Form
Maximize

$$
100 x_{1}+200 x_{2} \quad-M a_{1}
$$

subject to

$$
\begin{array}{rlrlrl}
2 x_{1}+ & 3 x_{2} & +s_{1} & & =200 \\
x_{1} & & & -s_{2} & +a_{1} & =60 \\
& & & & \\
& x_{2} & & & +s_{3} & =720 \\
x_{1}, & x_{2} & , s_{1} & , s_{2}, s_{3}, & a_{1} & \geq 0
\end{array}
$$

Example B

The Initial Simplex Tableau

Basic var	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	a_{1}	RHS
Z	-100	-200	0	0	0	M	0
s_{1}	2	3	1	0	0	0	2000
a_{1}	1	0	0	-1	0	1	60
s_{3}	0	1	0	0	1	0	720

The basic variable a_{1} has a nonzero coefficient in the Z-row. All basic variables should be eliminated from the Z-row before the simplex method can be applied using the following transformation:

Basic var	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	a_{1}	RHS
Z	$-\mathrm{M}-100$	-200	0	M	0	0	-60 M
s_{1}	2	3	1	0	0	0	2000
a_{1}	1	0	0	-1	0	1	60
s_{3}	0	1	0	0	1	0	720

Example B

Iteration 1

Step 1: Determine the Entering Variable

Basic var	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	a_{1}	RHS
Z	$-\mathrm{M}-100$	-200	0	M	0	0	-60 M
s_{1}	2	3	1	0	0	0	2000
a_{1}	1	0	0	-1	0	1	60
s_{3}	0	1	0	0	1	0	720

x_{1} is the variable with the most negative value in the objective row. x_{1} is the entering variable.

Example B

Iteration 1

Step 2: Determine the Leaving Variable
Take the ratio between the right hand side and the positive number in the x_{1} column

Basic var	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	a_{1}	RHS
Z	$-\mathrm{M}-100$	-200	0	M	0	0	-60 M
s_{1}	2	3	1	0	0	0	2000
a_{1}	1	0	0	-1	0	1	60
s_{3}	0	1	0	0	1	0	720

a_{1} is the variable with the minimal ratio. a_{1} is the leaving variable and 1 is the pivot element

Basic var	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	a_{1}	RHS
Z	$-\mathrm{M}-100$	-200	0	M	0	0	-60 M
s_{1}	2	3	1	0	0	0	2000
a_{1}	1	0	0	-1	0	1	60
s_{3}	0	1	0	0	1	0	720

Example B

Iteration 1

Step 3: Generate New Tableau
Divide the second row (row i^{*}) by 1 (the pivot element) to get the new row i^{*}

Basic var	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	a_{1}	RHS
Z	$-\mathrm{M}-100$	-200	0	M	0	0	-60 M
s_{1}	2	3	1	0	0	0	2000
a_{1}	1	0	0	-1	0	1	60
s_{3}	0	1	0	0	1	0	720

Replace each non-pivot row i with [new row $i]=[$ current row $i]-\left[\left(A_{i j^{*}}\right) \times\left(\right.\right.$ row $\left.\left.i^{*}\right)\right]$
[new row 1] = [current row 1] - 2 [row 2]
[new row 3] $=[$ current row 3] - o [row 2]

Basic var	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	a_{1}	RHS
Z	$-\mathrm{M}-100$	-200	0	M	0	0	-60 M
s_{1}	0	3	1	2	0	-2	1880
a_{1}	1	0	0	-1	0	1	60
s_{3}	0	1	0	0	1	0	720

Example B

Iteration 1

Step 3: Generate New Tableau Replace the objective row with:
[new obj row] = [current obj row] - [(-M-100) x (row 2)]

Basic var	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	a_{1}	RHS
Z	o	-200	0	-100	0	$\mathrm{M}+100$	6000
s_{1}	0	3	1	2	0	-2	1880
x_{1}	1	0	0	-1	0	1	60
s_{3}	0	1	0	0	1	0	720

Example B

Iteration 2

Step 1: Determine the Entering Variable

Basic var	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	a_{1}	RHS
Z	0	-200	0	-100	0	$\mathrm{M}+100$	6000
s_{1}	0	3	1	2	0	-2	1880
x_{1}	1	0	0	-1	0	1	60
s_{3}	0	1	0	0	1	0	720

x_{2} is the variable with the most negative value in the objective row. x_{2} is the entering variable.

Example B

Iteration 2

Step 2: Determine the Leaving Variable
Take the ratio between the right hand side and the positive number in the x_{1} column

Basic var	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	a_{1}	RHS
Z	0	-200	0	-100	0	$\mathrm{M}+100$	6000
s_{1}	0	3	1	2	0	-2	1880
x_{1}	1	0	0	-1	0	1	60
s_{3}	0	1	0	0	1	0	720

s_{1} is the variable with the minimal ratio. s_{1} is the leaving variable and 3 is the pivot element

Basic var	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	a_{1}	RHS
Z	0	-200	0	-100	0	$\mathrm{M}+100$	6000
s_{1}	0	3	1	2	0	-2	1880
x_{1}	1	0	0	-1	0	1	60
s_{3}	0	1	0	0	1	0	720

Example B

Iteration 2

Step 3: Generate New Tableau
Divide the first row (row i^{*}) by 3 (the pivot element) to get the new row i^{*}

Basic var	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	a_{1}	RHS
Z	0	-200	0	-100	0	$\mathrm{M}+100$	6000
s_{1}	0	1	$1 / 3$	$2 / 3$	0	$-2 / 3$	$1880 / 3$
x_{1}	1	0	0	-1	0	1	60
s_{3}	0	1	0	0	1	0	720

Replace each non-pivot row i with [new row $i]=[$ current row $i]-\left[\left(A_{i j^{*}}\right) \times\left(\right.\right.$ row $\left.\left.i^{*}\right)\right]$
[new row 2] = [current row 2] - o [row 1]
[new row 3] = [current row 3] - 1 [row 1]

Basic var	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	a_{1}	RHS
Z	o	-200	0	-100	0	$\mathrm{M}+100$	6000
s_{1}	0	1	$1 / 3$	$2 / 3$	0	$-2 / 3$	$1880 / 3$
x_{1}	1	0	0	-1	0	1	60
s_{3}	0	0	$-1 / 3$	$-2 / 3$	1	$2 / 3$	$280 / 3$

Example B

Iteration 2

Step 3: Generate New Tableau
Replace the objective row with:
[new obj row] = [current obj row] - [(-200) x (row 2)]

Basic var	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	a_{1}	RHS
Z	o	o	$200 / 3$	$100 / 3$	o	$\mathrm{M}-100 / 3$	$394000 / 3$
x_{2}	0	1	$1 / 3$	$2 / 3$	0	$-2 / 3$	$1880 / 3$
x_{1}	1	0	0	-1	0	1	60
s_{3}	0	0	$-1 / 3$	$-2 / 3$	1	$2 / 3$	$280 / 3$

Since there are no negative numbers in the objective row, this tableau is optimal. The optimal solution is $\left(x_{1}, x_{2}, s_{1}, s_{2}, s_{3}, a_{1}\right)=(60,1880 / 3, \mathrm{o}, \mathrm{o}, 28 \mathrm{o} / 3, \mathrm{o})$ The optimal value of the objective function is $394000 / 3$.

Example C

Simplex Tableau

$$
\left.\begin{array}{rlrl}
\mathrm{Z}-3 x_{1}-5 x_{2} & & & =0 \\
x_{1}+ & s_{1} & & =4 \\
2 x_{2}+ & & s_{2} & \\
=12 \\
3 x_{1}+2 x_{2}+ & & s_{3} & =18 \\
x_{1}, \quad x_{2}, & s_{1}, & s_{2}, & s_{3}
\end{array}\right)
$$

Basic var	Z	x_{1}	x_{2}	s_{1}	s_{2}	s_{3}	RHS
Z	1	-3	-5	o	o	o	o
s_{1}	o	1	o	1	o	o	4
s_{2}	o	o	2	o	1	o	12
s_{3}	o	3	2	o	o	1	18

Special Cases

Tie for the entering variable
In step 1 , if two or more non-basic variables are tied for having the most negative coefficient in the objective row, the entering basic variable may be chosen arbitrarily among these variables.

Tie for the leaving variable
In step 2, if two or more basic variables tie for having the smallest trade ratio, the leaving basic variable may be chosen arbitrarily among these variables. The other variable (that remains in the basis) will also become zero in the new BF solution.

Degeneracy

- A basic variable with a value of zero is called a degenerate variable; a solution with a degenerate variable is called a degenerate solution.
- This can occur at formulation or if there is a tie for the minimising value in the ratio test to determine the leaving variable.

Special Cases

Alternative Optimal Solutions

If there is a non-basic variable with an objective row value equal to zero in the final tableau, there are multiple optima available.

Unboundedness

If all entries in an entering column are non-positive, there is no leaving variable.
In that case, the entering basic variable could be increased indefinitely without giving negative values to any of the current basic variables and the problem is unbounded.

Infeasibility

If there is an artificial variable in the optimal solution (i.e. the artifical variable remains positive in the final tableau), the problem is infeasible .

Example D: Degeneracy

Mathematical Problem Formulation

Example F: Unbounded Problem

Mathematical Problem Formulation

Example G: Infeasible Problem

Mathematical Problem Formulation

Maximize	$2 x_{1}+6 x_{2}$	
subject to	$4 x_{1}+3 x_{2}$	≤ 12
	$2 x_{1}+x_{2}$	≥ 8
	x_{1},	x_{2}

Canonical Form
Maximize $\quad 2 x_{1}+6 x_{2}-M a_{2}$
subject to $4 x_{1}+3 x_{2}+s_{1} \quad=12$
$2 x_{1}+x_{2}-\quad s_{2}+M a_{2}=8$
$x_{1}, \quad x_{2}, \quad s_{1}, \quad s_{2}, \quad s_{3} \geq 0$

Two-Phase Method

When using the big M-method, we can split the problem and solve the problem in two phases.
Phase 1: Divide the big M method objective function terms by M and drop the other negligible terms.

$$
\begin{array}{ll}
\text { Minimize } & \mathrm{Z}=\sum \text { artificial variables } \\
\text { subject to } & \text { Revised constraints (with artificial variables) }
\end{array}
$$

Phase 2: Find the optimal solution for the real problem. Use the optimal solution of phase 1 as initial basic feasible solution for applying the simplex method to the real problem (the big M method coefficients can be dropped dependent of outcome of phase 1).

$$
\begin{array}{ll}
\text { Minimize } & \mathrm{Z}=\sum \text { original variables } \\
\text { subject to } & \text { Original constraints (without artificial variables) }
\end{array}
$$

This approach is justified as the M-terms dominate the negligible terms.

Example H: Two-Phase Method

Mathematical Problem Formulation
LP formulation
Minimize $\quad 2 x_{1}+3 x_{2}+x_{3}$
subject to $\quad x_{1}+4 x_{2}+2 x_{3} \geq 8$

$$
3 x_{1}+2 x_{2} \quad \geq 6
$$

$$
x_{1}, \quad x_{2}, \quad x_{3} \geq 0
$$

Canonical Form (Big M-method)

\[

\]

Example H: Two-Phase Method

Mathematical Problem Formulation Two-phase Method Phase 1 Problem

Minimize
subject to

$$
\begin{array}{rllll}
a_{1}+a_{2} \Leftrightarrow \quad \text { Max } \quad-a_{1}-a_{2} \\
x_{1}+4 x_{2}+2 x_{3} & -s_{1} & +a_{1} & =8 \\
3 x_{1}+2 x_{2} & & -s_{2}+a_{2} & =6 \\
x_{1}, & x_{2}, & x_{3}, & s_{1}, & s_{2}, \\
a_{1}, & a_{2} & \geq 0
\end{array}
$$

Phase 2 Problem Minimize

$$
2 x_{1}+3 x_{2}+x_{3} \quad \Leftrightarrow \quad \operatorname{Max} \quad-2 x_{1}-3 x_{2}-x_{3}
$$

subject to

$$
\begin{array}{rlrl}
x_{1}+4 x_{2}+2 x_{3}-s_{1} & & =8 \\
3 x_{1}+2 x_{2} & & -s_{2} & =6 \\
x_{1}, \quad x_{2}, \quad x_{3}, \quad s_{1}, & s_{2} & \geq 0
\end{array}
$$

Example H: Two-Phase Method

Phase 1: The Initial Simplex Tableau

Basic var	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	a_{1}	a_{2}	RHS
-Z	o	o	o	o	o	1	1	0
a_{1}	1	4	2	-1	0	1	0	8
a_{2}	3	2	0	0	-1	0	1	6

The basic variables a_{1} and a_{2} have a nonzero coefficient in the Z-row. All basic variables should be eliminated from the Z-row before the simplex method can be applied using the following transformation:

Example H: Two-Phase Method

Phase 1: Iteration 1
Step 1: Determine the Entering Variable

Basic var	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	a_{1}	a_{2}	RHS
$-Z$	-4	-6	-2	1	1	0	0	-14
a_{1}	1	4	2	-1	0	1	0	8
a_{2}	3	2	0	0	-1	0	1	6

x_{2} is the variable with the most negative value in the objective row. x_{2} is the entering variable.

Example H: Two-Phase Method

Phase 1: Iteration 1
Step 2: Determine the Leaving Variable
Take the ratio between the right hand side and the positive number in the x_{2} column

Basic var	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	a_{1}	a_{2}	RHS
$-Z$	-4	-6	-2	1	1	0	0	-14
a_{1}	1	4	2	-1	0	1	0	8
	$8 / 4=2$							
a_{2}	3	2	0	0	-1	0	1	6
$6 / 2=3$								

a_{1} is the variable with the minimal ratio. a_{1} is the leaving variable and 4 is the pivot element

Basic var	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	a_{1}	a_{2}	RHS
-Z	-4	-6	-2	1	1	0	0	-14
a_{1}	1	4	2	-1	0	1	0	8
a_{2}	3	2	0	0	-1	0	1	6

Example H: Two-Phase Method

Phase 1: Iteration 1
Step 3: Generate New Tableau
Divide the first row (row i^{*}) by 4 (the pivot element) to get the new row i^{*}

Basic var	x_{2}	x_{2}	x_{3}	s_{1}	s_{2}	a_{1}	a_{2}	RHS
$-Z$	-4	-6	-2	1	1	0	0	-14
a_{1}	$1 / 4$	1	$1 / 2$	$-1 / 4$	0	$1 / 4$	0	2
a_{2}	3	2	0	0	-1	0	1	6

Replace each non-pivot row i with [new row $i]=[$ current row $i]-\left[\left(A_{i j^{*}}\right) \times\left(\right.\right.$ row $\left.\left.i^{*}\right)\right]$
[new row 2] = [current row 2] - 2 [row 1]

Basic var	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	a_{1}	a_{2}	RHS
-Z	-4	-6	-2	1	1	0	0	-14
a_{1}	$1 / 4$	1	$1 / 2$	$-1 / 4$	0	$1 / 4$	0	2
a_{2}	$5 / 2$	0	-1	$1 / 2$	-1	$-1 / 2$	1	2

Example H: Two-Phase Method

Phase 1: Iteration 1
Step 3: Generate New Tableau
Replace the objective row with:
[new obj row] = [current obj row] - [(-6) x (row 1)]

Basic var	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	a_{1}	a_{2}	RHS
$-Z$	$-5 / 2$	0	1	$-1 / 2$	1	$3 / 2$	0	-2
x_{2}	$1 / 4$	1	$1 / 2$	$-1 / 4$	0	$1 / 4$	0	2
a_{2}	$5 / 2$	0	-1	$1 / 2$	-1	$-1 / 2$	1	2

Example H: Two-Phase Method

Phase 1: Iteration 2
Step 1: Determine the Entering Variable

Basic var	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	a_{1}	a_{2}	RHS
-Z	$-5 / 2$	0	1	$-1 / 2$	1	$3 / 2$	0	-2
x_{2}	$1 / 4$	1	$1 / 2$	$-1 / 4$	0	$1 / 4$	0	2
a_{2}	$5 / 2$	0	-1	$1 / 2$	-1	$-1 / 2$	1	2

x_{1} is the variable with the most negative value in the objective row. x_{1} is the entering variable.

Example H: Two-Phase Method

Phase 1: Iteration 2
Step 2: Determine the Leaving Variable
Take the ratio between the right hand side and the positive number in the x_{1} column

Basic var	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	a_{1}	a_{2}	RHS
$-Z$	$-5 / 2$	0	1	$-1 / 2$	1	$3 / 2$	0	-2
x_{2}	$1 / 4$	1	$1 / 2$	$-1 / 4$	0	$1 / 4$	0	2
a_{2}	$5 / 2$	0	-1	$1 / 2$	-1	$-1 / 2$	1	2

a_{2} is the variable with the minimal ratio. a_{2} is the leaving variable and $5 / 2$ is the pivot element

Basic var	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	a_{1}	a_{2}	RHS
$-Z$	$-5 / 2$	0	1	$-1 / 2$	1	$3 / 2$	0	-2
x_{2}	$1 / 4$	1	$1 / 2$	$-1 / 4$	0	$1 / 4$	0	2
a_{2}	$5 / 2$	0	-1	$1 / 2$	-1	$-1 / 2$	1	2

Example H: Two-Phase Method

Phase 1: Iteration 2
Step 3: Generate New Tableau
Divide the second row (row i^{*}) by $5 / 2$ (the pivot element) to get the new row i^{*}

Basic var	x_{2}	x_{2}	x_{3}	s_{1}	s_{2}	a_{1}	a_{2}	RHS
$-Z$	$-5 / 2$	0	1	$-1 / 2$	1	$3 / 2$	0	-2
x_{2}	$1 / 4$	1	$1 / 2$	$-1 / 4$	0	$1 / 4$	0	2
a_{2}	1	0	$-2 / 5$	$1 / 5$	$-2 / 5$	$-1 / 5$	$2 / 5$	$4 / 5$

Replace each non-pivot row i with [new row $i]=[$ current row $i]-\left[\left(A_{i j^{*}}\right) \times\left(\right.\right.$ row $\left.\left.i^{*}\right)\right]$
[new row 1] = [current row 1] - (1/4) [row 2]

Basic var	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	a_{1}	a_{2}	RHS
$-Z$	$-5 / 2$	0	1	$-1 / 2$	1	$3 / 2$	0	-2
x_{2}	0	1	$3 / 5$	$-3 / 10$	$1 / 10$	$3 / 10$	$-1 / 10$	$9 / 5$
a_{2}	1	0	$-2 / 5$	$1 / 5$	$-2 / 5$	$-1 / 5$	$2 / 5$	$4 / 5$

Example H: Two-Phase Method

Phase 1: Iteration 2
Step 3: Generate New Tableau
Replace the objective row with:
[new obj row] $=[$ current obj row $]-[(-5 / 2) \times($ row 1$)]$

Basic var	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	a_{1}	a_{2}	RHS
-Z	o	o	o	o	o	1	1	0
x_{2}	0	1	$3 / 5$	$-3 / 10$	$1 / 10$	$3 / 10$	$-1 / 10$	$9 / 5$
x_{1}	1	0	$-2 / 5$	$1 / 5$	$-2 / 5$	$-1 / 5$	$2 / 5$	$4 / 5$

Since there are no negative numbers in the objective row, this tableau is optimal.

Note that there are different non-basic variables with an objective row value equal to zero in the final tableau. There are multiple optimal solutions available.

Example H: Two-Phase Method

Phase 2: The Initial Simplex Tableau

Basic var	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	a_{1}	a_{2}	RHS
-Z	o	o	o	o	o	1	1	o
x_{2}	0	1	$3 / 5$	$-3 / 10$	$1 / 10$	$3 / 10$	$-1 / 10$	$9 / 5$
x_{1}	1	0	$-2 / 5$	$1 / 5$	$-2 / 5$	$-1 / 5$	$2 / 5$	$4 / 5$

Use optimal solution of phase 1 as initial solution for phase 2 by dropping the columns of the artifical variables.

Basic var	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	RHS
$-Z$	o	o	o	o	o	o
x_{2}	o	1	$3 / 5$	$-3 / 10$	$1 / 10$	$9 / 5$
x_{1}	1	0	$-2 / 5$	$1 / 5$	$-2 / 5$	$4 / 5$

Sustitute phase 2 objective function

Basic var	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	RHS
$-Z$	2	3	1	0	0	0
x_{2}	0	1	$3 / 5$	$-3 / 10$	$1 / 10$	$9 / 5$
x_{1}	1	0	$-2 / 5$	$1 / 5$	$-2 / 5$	$4 / 5$

Example H: Two-Phase Method

Phase 2: The Initial Simplex Tableau

The basic variables x_{1} and x_{2} have a nonzero coefficient in the Z-row. All basic variables should be eliminated from the Z-row before the simplex method can be applied using the following transformation:

Basic var	x_{1}	x_{2}	x_{3}	s_{1}	s_{2}	RHS
-Z	o	o	o	$1 / 2$	$1 / 2$	-7
x_{2}	0	1	$3 / 5$	$-3 / 10$	$1 / 10$	$9 / 5$
x_{1}	1	0	$-2 / 5$	$1 / 5$	$-2 / 5$	$4 / 5$

Since there are no negative numbers in the objective row, this tableau is optimal and Z $=7$.

