

FACULTY OF ECONOMICS AND BUSINESS ADMINISTRATION

OPERATIONS RESEARCH

Prof. dr. Broos Maenhout

Department of Business Informatics and Operations Management

Course outline

- 0. Practical Information Course overview
- 1. Introduction to Operations Research
- 2. Linear Programming: Introduction
 - a. Modelling Linear Programming Problems
 - b. The Graphical Solution Method
- 3. Linear Programming: The Simplex Method
- 4. Linear Programming: Duality Theory
- 5. Linear Programming: Sensitivity Analysis
- 6. Linear Programming: Multi-Criteria Decision Making
- 7. Linear Programming: Special Cases
 - a. The Transportation Problem
 - b. The Assignment Problem
 - c. The Transshipment Problem
- 8. Network Optimisation Problems
- 9. Integer Programming
 - a. Modelling and Solving of Integer Programming Problems
 - b. Constraint Programming
- **10.** Nonlinear Programming
- **11. Dynamic Programming**
- **12. Decision Analysis**
- 13. Game Theory
- 14. Markov Chains

CHAPTER

LINEAR PROGRAMMING – THE SIMPLEX METHOD

	С	Course Outline	
modelling	Linear programming	Modelling Solving: The Simplex Method Duality Theory Sensitivity Analysis Special Cases: Transportation, Assignment and Transshipment Problems	
stic r	Network optimization	Modelling and solving	
etermini	Integer programming	Modelling Solving Constraint Programming	
Д	Dynamic programming	Modelling and Solving	
	Nonlinear programming	Modelling and Solving	
oabilistic delling	Decision making under uncertainty	Decision Analysis Game Theory Markov Chains	
Prol mc	Queueing Theory	Modelling and Solving	
Derations Re	esearch		

Settir	ng Up the Simplex Method	
Mathematical Prob	lem Formulation	
Maximize	$c_1 x_1 + c_2 x_2 + \ldots + c_n x_n$	
subject to	$\begin{aligned} a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n &\leq b_1 \\ a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n &\leq b_2 \\ & \dots \\ a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n &\leq b_m \\ x_1 &\geq 0, x_2 \geq 0, \dots, x_n \geq 0 \end{aligned}$	
Operations Research © Broos Maenhout		24

Settin	g Up tl	ne Si	mplex Method	
 Standard Form Example LP Formul 	ation			
Minimize	$100 x_A +$	80 <i>x</i> _B		
subject to	$2 x_A - x_A + x_A,$	$egin{array}{c} x_B & $	≥0 ≥1000 ≥0	
Operations Research © Broos Maenhout				28

	Example A	
Mathematical Proble	em Formulation	
Maximize	$1.00 x_G + 1.35 x_W$	
subject to	$2 x_G + 4 x_W \leq 500$ $x_G \leq 200$ $x_W \leq 120$ $x_W = x > 0$	
 Standard Form Maximize 	$x_G, x_W \ge 0$ 1.00 $x_G + 1.35 x_W$	
subject to	$2 x_{G} + 4 x_{W} + s_{I} = 500$ $x_{G} + s_{2} = 200$ $x_{W} + s_{3} = 120$ $x_{G}, x_{W}, s_{I} + s_{2} + s_{3} \ge 0$	
Operations Research © Broos Maenhout	,	58

			Exai	mp	le A	<u>.</u>			
T I I									
Iteration 1									
> Step 1: Dete	rmine the I	Enteri	ng Variab	le					
	Basic var	x _G	x _w	<i>s</i> 1	s 2	s 3	RHS		
	Z	-1.00	-1.35	o	0	0	0		
	<i>s</i> ₁	2	4	1	0	0	500		
	s 2	1	ο	ο	1	0	200		
	s ₃	0	1	0	•	1	120		
$x_{ m W}$ is the var variable.	s₃ siable with t	o the mo	ı ost negati	o ve val	o ue in the	1 e objec	120 tive row] <i>v. x</i> _w is the enterin	ıg
<i>x</i> _w is the var variable.	iable with	o the mo	1 Dist negati	o ve val	o ue in the	¹ e objec	120 tive row	, <i>x</i> _w is the enterin	ıg

			Exa	mp	le A			
				0				
Iteration 1								
> Step 2: Det	ermine the	Leaving	g Variab	le				
- Take the 1	ratio betweer	the righ	nt hand si	ide and	the posit	ive num	ber in th	ne x _w column
	Basic var	xg	x _w	s ,	s 2	s ,	RHS	
	Z	-1.00	-1.35	0	0	o	0	
	<i>s</i> ₁	2	4	1	ο	ο	500	500/4 = 125
	s 2	1	0	ο	1	0	200	-
	s 3	0	1	0	0	1	120	120/1 = 120 MIN
$s_3^{}$ is the var element	iable with t	he min	imal rat	io. <i>s</i> ₃ is	the lea	ving va	riable a	and 1 is the pivot
$s_3^{}$ is the var element	iable with t Basic var	he min x_{g}	$\frac{x_{w}}{x_{w}}$	io. s_3 is	the lea	ving va	riable a	nd 1 is the pivot
s_3 is the var element	iable with t	he min $x_{\rm G}$ -1.00	x _w -1.35	io. s_3 is $\frac{s_1}{0}$	the lear	ving va	riable a	nd 1 is the pivot
s_3 is the var element	iable with t Basic var Z S	he min $x_{\rm G}$ -1.00 2 1	$\frac{x_{W}}{-1.35}$	io. s_3 is $\frac{s_1}{0}$	the lear	ving va	RHS 0 500	and 1 is the pivot
s_3 is the var element	iable with t Basic var Z s_1 s_2 s	he min $ \frac{x_{\rm G}}{-1.00} $ 1	x _w -1.35 4 0	io. s_3 is $\frac{s_1}{0}$	the leaves s_2 o	ving va	riable a RHS 0 500 200	and 1 is the pivot
s_3 is the var element	Basic var Z s_1 s_2 s_3	he min $ \frac{x_{G}}{-1.00} $ 1 0	x w -1.35 4 0 1	io. s ₃ is s ₁ 0 1 0 0	the lear 0 0 1 0	ving va <u>s</u> 0 0 1	riable a RHS 0 500 200 120	and 1 is the pivot

		•	Exa	mp	le A			
Iteration 1								
Ston of Conor	ata Naur'	Tablaar						
> Step 3: Gener	ate New	ableat	1					- <u>w</u>
 Divide the the 	aird row (1	ow 1*) b	y 1 (the p	ivot elei	nent) to	get the r	new row t	*
	Basic var	x _G	x _w	<i>s</i> 1	s 2	s 3	RHS	
	Z	-1.00	-1.35	0	0	0	0	
	<i>s</i> 1	2	4	1	0	0	500	
	s 2	1	0	ο	1	0	200	
		-						
	<u>*3</u>	0	1	0	0	1	120	
- Replace eac	h non-pivo [new row [new row	ot row <i>i</i> v 1] = [cu 2] = [cu	vith [new rrent row rrent rov	0 7 row i] = 7 1] − 4 [7 2] − 0	o = [curren [row 3] [row 3]	t row i]	120 - [(A _{ij*}) x	(row i*)]
- Replace eac	h non-pivo [new row [new row Basic var	ot row <i>i</i> v 1] = [cu 2] = [cu x _g	vith [new rrent row rrent rov	$\int_{a}^{b} row i] = \frac{1}{2} - 4[bv 2] - 0$	• = [curren [row 3] [row 3]	t row i]	120 - [(A _{ij*}) x RHS	(row i*)]
- Replace eac	h non-pivo [new row [new row Basic var Z	ot row iv 1] = [cu: 2] = [cu: x_{G} -1.00	vith [new rrent row rrent rov x_w -1.35	$\frac{0}{1} \operatorname{row} i] = \frac{1}{2} - 4 [\frac{1}{2} - 4] = 0$ $\frac{s_1}{0}$	o = [curren [row 3] [row 3] s ₂ o	1 t row i] s ₃ 0	120 - [(A _{ij*}) x RHS 0	(row i*)]
- Replace each	h non-pivo [new row [new row Basic var Z s_1	ot row iv 1] = [cu 2] = [cu x_{G} -1.00 2	vith [new rrent row x_W -1.35 o	$\frac{0}{1} \operatorname{row} i] = \frac{1}{2}$ $\frac{1}{2} - 4[\frac{1}{2} + 4[\frac{1}{2} + \frac{1}{2}] - 0$ $\frac{s_1}{0}$ $\frac{1}{1}$	o = [curren [row 3] [row 3] <u>s₂</u> 0	1 t row i] s ₃ 0 -4	120 - [(A _{ij*}) x RHS 0 20	(row i*)]
- Replace eac	h non-pive [new row [new row Basic var Z s_1 s_2	ot row iv 1] = [cu 2] = [cu x_{G} -1.00 2 1	1 vith [new rrent row rrent rov x_W -1.35 o o	$ \frac{0}{1 \text{ row } i] = 0 $ $ \frac{1}{2} - 4 [$ $ \frac{1}{2} - 0 $ $ \frac{1}{2} $	$\frac{0}{row 3}$ [row 3] [row 3] $\frac{s_2}{0}$ 0 1	1 t row i] s ₃ 0 -4 0	120 - [(A_{ij*}) x RHS 0 20 200	(row i*)]

Iteration 1								
> Step 3: G	enerate New 7	Tableau						
- Replace	e the objective r	ow with:						
1	[new obj r	ow] = [c	current o	obj row]	- [(-1.3	5) x (row	3)]	
	Basic var	× -	Y	c	c	e	RHS	
	Z	-1.00	0	0	0	1.35	162	
	<i>S</i> ₁	2	0	1	0	-4	20	
	S 2	1	0	0	1	0	200	
	<i>x</i> _w	0	1	0	0	1	120	

		-	Exa	mp	le A	-		
 Iteration 2 								
> Step 2: Det	ermine the	Leaving	y Variał	ole				
- Take the	ratio between	the righ	, it hand s	ide and	the posit	ive num	ber in th	x_{G} column
	Basic var	xg	x _w	s ,	s ,	s .	RHS]
	Z	-1.00	0	0	0	1.35	162	-
	<i>s</i> 1	2	0	1	0	-4	20	20/2 = 10 MIN
	s 2	1	0	ο	1	o	200	200/1 = 200
	<i>x</i> _w	0	1	0	0	1	120	-
			• •					1 1
<i>s</i> ₁ is the var element	riable with t Basic var	he mini	mal rat	tio. s_1 is	the lea	ving var	nable a	nd 2 is the pivot
<i>s</i> ₁ is the var element	Basic var	he mini $\frac{x_{\rm G}}{-1.00}$	mal rat $\frac{x_{W}}{0}$	$\frac{s_1}{s_1}$ is	the leaves $\frac{s_2}{0}$	s ₃ 1.35	RHS 162	nd 2 is the pivot
<i>s</i> ₁ is the var element	Basic var	he mini $\frac{x_{\rm G}}{-1.00}$	mal rat $\frac{x_{W}}{0}$	$\frac{s_1}{s_1}$	the leav	s ₃ 1.35 -4	1able a RHS 162 20	nd 2 is the pivot
<i>s</i> ₁ is the var element	Table with t Basic var Z s_1 s_2	he mini $\frac{x_{\rm G}}{-1.00}$	mal rat $ \frac{x_{W}}{0} $ 0 0	$\frac{s_1}{0}$	the leave $\frac{s_2}{0}$	s ₃ 1.35 -4 0	RHS 162 20 200	nd 2 is the pivot
s, is the var element	$\frac{\text{Basic var}}{Z}$	he mini $\frac{x_{\rm G}}{-1.00}$	mal rat $ x_{W} $ 0 0 0 1	$\frac{s_{\downarrow}}{0}$	the leave $\frac{s_2}{0}$	s ₃ 1.35 -4 0 1	RHS 162 20 200 120	nd 2 is the pivot
s, is the var element	Table with t Basic var Z s_1 s_2 x_W	he mini $x_{\rm G}$ -1.00 2 1 0	mal rat	io. s_1 is $\frac{s_1}{0}$	the leave $\frac{s_2}{0}$	ving var ^s 3 1.35 -4 0 1	RHS 162 20 200 120	nd 2 is the pivot

			Exa	mp	le A				
				. 🔿 .					
Iteration 2									
> Step 3: Genera	te New '	Tableau	L						
 Divide the fir 	rst row (ro	ow <i>i*</i>) by	2 (the p	ivot elen	ient) to	get the n	ew row i	*	
	Basic var	x _G	x _w	<i>s</i> 1	s 2	s 3	RHS		
	Z	-1.00	0	о	0	1.35	162		
	<i>s</i> 1	1	0	1/2	0	-2	10		
	s 2	1	0	0	1	0	200		
	x _w	0	1	0	0	1	120		
- Replace each	non-pivo [new row	ot row <i>i</i> w 2] = [cu	vith [nev rrent ro	v row i] = w 2] – 1 [[currer row 1]	ıt row i]∙	- [(A _{ij*}) x	(row i*)]	
	Luew row	3] = [cu	rrent ro	w 3] – 0	[row 1]				
	Basic var	x _G	x _w	<i>S</i> ₁	<i>S</i> ₂	<i>s</i> 3	RHS		
	Z	-1.00	0	0	0	1.35	162		
	<i>S</i> ₁	1	0	1/2	0	-2	10		
	S 2	0	0	-1/2	1	2	190		
	x _w	0	1	0	0	1	120		
Operations Research © Broos Maenhout									66

• Iteration 2 • Step 3: Generate New Tableau • Replace the objective row with: $[new obj row] = [current obj row] - [(-1.00) x (row 1)]$ $\frac{\underline{Basic var} \ x_{G} \ x_{W} \ s_{1} \ s_{2} \ s_{3} \ \underline{RHS}}{\underline{Z} \ 0 \ 0 \ 1/2 \ 0 \ -2 \ 10}$ $\frac{\underline{Basic var} \ x_{G} \ 1 \ 0 \ 1/2 \ 0 \ -2 \ 10}{\underline{s_{2}} \ 0 \ 0 \ -1/2 \ 1 \ 2 \ 190}$				Еха		le A			
Step 3: Generate New Tableau Replace the objective row with: $[new obj row] = [current obj row] - [(-1.00) x (row 1)]$ $\frac{\underline{Basic var} x_{c} x_{w} s_{1} s_{2} s_{3} \underline{RHS}}{Z 0 0 1/2 0 -0.65 172}$ $\frac{x_{c}}{x_{c}} 1 0 1/2 0 -2 10$ $\frac{s_{2}}{s_{2}} 0 0 -1/2 1 2 190$ $\frac{x_{w}}{0} 1 0 0 1 120$	 Iteration 2 								
$- \text{ Replace the objective row with:} \\ \text{[new obj row]} = [\text{current obj row]} - [(-1.00) \text{ x (row 1)}] \\ \\ \hline \frac{\text{Basic var}}{Z} & \frac{x_{\text{G}}}{0} & \frac{x_{\text{W}}}{1/2} & \frac{s_{2}}{0} & \frac{s_{3}}{0} & \frac{\text{RHS}}{1/2} \\ \hline \frac{x_{\text{G}}}{x_{\text{G}}} & 1 & 0 & \frac{1}{2} & 0 & -2 & 10 \\ \hline s_{2} & 0 & 0 & -\frac{1}{2} & 1 & 2 & 190 \\ \hline x_{\text{W}} & 0 & 1 & 0 & 0 & 1 & 120 \\ \hline \end{array}$	> Step 3: Gene	erate New T	Tableau	1					
$\begin{bmatrix} \text{new objective for Hull} \\ \text{[new obj row]} = [\text{current obj row]} - [(-1.00) \text{ x (row 1)}] \\ \\ \hline $	- Replace the	e objective r	ow with						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	- Replace th	Inew objective r	owl = [current c	obi rowl	-[(-1.0	o) x (row	1)]	
Basic var x_{G} x_{W} s_{1} s_{2} s_{3} RHS \overline{Z} 001/20-0.65172 x_{G} 101/20-210 s_{2} 00-1/212190 x_{W} 01001120			011] = [current	00]1011]	[(1.0	0) x (10)	1/]	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Basic var	x _G	x _w	<i>S</i> ₁	<i>S</i> ₂	s_3	RHS	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Z	0	0	1/2	0	-0.65	172	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		x _G	1	0	1/2	0	-2	10	
x _w 0 1 0 0 1 120		S 2	0	0	-1/2	1	2	190	
		<i>x</i> w	0	1	0	0	1	120	
		x _w	0	1	0	0	1	120	

			Exa	mpl	le A			
 Iteration 3 								
> Step 2: Det	ermine the l	Leavin	g Varial	ole				
- Take the	ratio between	the rig	ht hand s	side and t	the posit	tive num	ber in th	ie s ₃ column
	Basic var	xg	x _w	s 1	s 2	s 3	RHS	
	Z	0	0	1/2	0	-0.65	172	-
	x _G	1	ο	1/2	о	-2	10	-
	s 2	0	0	-1/2	1	2	190	190/2 = 95 MIN
	<i>x</i> _w	0	1	0	0			100/1 - 100
					0	1	120	120/1 - 120
s_2 is the var element	riable with th Basic var	he min	imal ra	tio. s ₂ is	the lea	ving va	riable a	nd 2 is the pivot
s_2 is the var element	riable with the Basic var	he min _{x_g o}	imal ra	tio. s_2 is $\frac{s_1}{1/2}$	the lea	^s 3 -0.65	riable a RHS	nd 2 is the pivot
<i>s</i> ₂ is the var element	riable with the Basic var	he min $\frac{x_{\rm G}}{0}$	imal ra x _w o	tio. s_2 is $\frac{s_1}{1/2}$	the lea	$\frac{s_3}{-0.65}$	riable a RHS 172 10	nd 2 is the pivot
s_2 is the var element	riable with the Basic var	he min $\frac{x_{\rm G}}{0}$	imal ra	tio. s_2 is $\frac{s_1}{1/2}$ $\frac{1/2}{-1/2}$	the leas	s ₃ -0.65 -2 2	riable a RHS 172 10 190	nd 2 is the pivot
s_2 is the var element	riable with the basic var	he min $ \frac{x_{G}}{0} $ 1 0 0	$\frac{x_{W}}{0}$	tio. s_2 is $\frac{s_1}{1/2}$ $\frac{1/2}{-1/2}$ o	the leas	s ₃ -0.65 -2 2 1	riable a RHS 172 10 190 120	nd 2 is the pivot
s_2 is the var element	triable with the series of th	he min $ \frac{x_{G}}{0} $ 1 0 0	imal ra x _w 0 0 0	tio. s_2 is $\frac{s_1}{1/2}$ $\frac{1/2}{-1/2}$ o	the leases	1 wing va	riable a RHS 172 10 190 120	nd 2 is the pivot

			Exa	mp	le A	L			
				. () ·					
• Iteration 3									
> Step 3: Gene	rate New '	Fablea	u						
 Divide the 	second row	(row <i>i</i> *)) by 2 (th	e pivot e	lement)	to get th	e new ro	w i*	
	Basic var	x _G	x _w	<i>s</i> ,	s 2	s 3	RHS		
	Z	0	0	1/2	0	-0.65	172		
	x _G	1	0	1/2	0	-2	10		
	s 2	0	0	-1/4	1/2	1	95		
	<i>x</i> _w	0	1	0	0	1	120		
- Replace eac	ch non-pivo [new row	ot row <i>i</i> v 1] = [cu	with [new rrent row	v row i] = v 1] + 2 [= [currei [row 2]	nt row i]	- [(A _{ij*}) x	: (row i*)]	
	lnew row	3] = [ct	irrent ro	w 3] – 1	row 2				
	Basic var	x _G	x _w	<i>S</i> ₁	<i>S</i> ₂	<i>s</i> ₃	RHS		
	Z	0	0	1/2	0	-0.65	172		
	<i>x</i> _G	1	0	0	1	0	200		
	S 2	0	0	-1/4	1/2	1	95		
	<i>x</i> _w	0	1	1/4	-1/2	0	25		
Operations Research © Broos Maenhout									70

Iteration 3									
Step 3: Gene	erate New 1	Tableau	1						
 Replace th 	e objective r	ow with	:						
	[new obj 1	ow] = [current	obj row]	– [0.65 x	(row 2)]		
	Basic var	x _G	x _w	<i>s</i> ₁	S 2	S 3	RHS		
	Z	0	0	27/80	13/40	0	233.75		
	x _G	1	0	0	1	0	200		
	S 2	о	0	-1/4	1/2	1	95		
	x _w	0	1	1/4	-1/2	0	25		
 Since there a The optim The optim 	are no nega al solution is al value of th	ttive nu s (x _G , x _W ne object	ımbers , <i>s</i> ₁ , <i>s</i> ₂ , <i>s</i> tive func	in the o ₃) = (200 ction is 2;	bjective 9, 25, 0, 9 33.75	row, t 5, 0)	his tablea	u is opti	mal.

	Ex	kamp	ole B		
Mathematical Probl	em Formula	tion			
Maximize	$100 x_1 +$	200 <i>x</i> ₂			
subject to	$2 x_{i} +$	3 x ₂	<u><</u> 2000		
	<i>x</i> ₁		<u>></u> 60		
		x_2	<u><</u> 720		
	x_1	, <i>x</i> ₂	≥ 0		
> Canonical Form					
Maximize	$100 x_1 +$	200 <i>x</i> ₂	- Ma ₁		
subject to	$2 x_1 +$	3 x ₂	+ S ₁	= 2 000	
	<i>x</i> ₁		- S ₂	$+ a_1 = 60$	
		x_2	+ \$	s ₃ = 720	
	x_1	, x ₂	, S ₁ , S ₂ , S	$a_3, a_1 \ge 0$	
Operations Research					72

			Ex	an	nple	В			
				()				
• The Initial Sir	nplex T	ableau	ı						
	Basic var	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	S 2	s_3	<i>a</i> ₁	RHS	
	Z	-100	-200	0	0	0	М	0	
	<i>s</i> ₁	2	3	1	0	0	0	2000	
	<i>a</i> ₁	1	0	0	-1	0	1	60	
	<i>s</i> 3	0	1	0	0	1	0	720	
be eliminate following tra	d from t insform: Z	he Z-ro ation: – 100	bw befo	re the	x + x	x met	hod car	i be app	lied using the $= 0$
-M (-	100	$r \perp$	_00			ст		-60
(Z – (-:	100 – N	$(x_1 - x_1) = x_1 - x_1$	20	0 x ₂ +		M S ₂	u	= -60M
	Basic var	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	\$ 2	<i>s</i> 3	<i>a</i> ₁	RHS	
	Z	-M-100	-200	0	М	0	0	-60M	
	<i>S</i> ₁	2	3	1	0	0	0	2000	
	<i>a</i> ₁	1	0	0	-1	0	1	60	
	<i>s</i> 3	0	1	0	0	1	0	720	
Operations Research © Broos Maenhout									73

.			Ex	xam	ple	B				
• Iteration 1	ormino	tha Enta	ring W	miabla						
> Step 1: Dett	ernnne n	the Ente	ring va	artable				DUG	1	
	Basic var	<i>x</i> ₁	x 2	<i>s</i> ₁	\$ 2	s 3	<i>a</i> ₁	RHS		
		-M-100	-200	0	M	0	0	-001/1		
	s 1	2	3	1	0	0	0	2000		
	<i>a</i> ₁			0	-1	0	1	500		
<i>x</i> ₁ is the var variable.	iable w	ith the m	iost ne	gative v	alue in	the obj	ective 1	row. x_1 is	s the ente	ering

			ΕΣ	xam	ple	В			
)				
 Iteration 1 									
> Step 2: De	termine	the Lea	ving Va	riable					
- Take the	ratio bet	ween the	right ha	nd side	and the p	oositive 1	number	in the x_1	column
	Basic var	x ,	- x 2	s 1	s 2	s .	a 1	RHS]
	Z	-M-100	-200	0	М	0	0	-60M	
	<i>s</i> 1	2	3	1	ο	о	o	2000	2000/2 = 1000
	a ,	1	0	0	-1	0	1	60	60/1 = 60 MIN
	s 3	0	1	0	0	1	0	720	-
a_1 is the value element	riable w	ith the 1	ninima	l ratio.	a_1 is the	e leavin	g varial	ole and	1 is the pivot
a_1 is the value element	riable w Basic var	ith the 1	ninimal x2	l ratio.	a_1 is the	e leaving	g varial	ole and RHS	1 is the pivot
<i>a</i> ₁ is the va element	uriable w Basic var Z	ith the 1 	minima x ₂ -200	l ratio.	a_1 is the $\frac{s_2}{M}$	e leaving s ₃ o	g varial	ole and RHS -60M	1 is the pivot
a_1 is the value of the element	Basic var Z	$\frac{x_{i}}{-M-100}$	ninimal x ₂ -200 3	l ratio.	a_1 is the $\frac{s_2}{M}$	e leaving s ₃ o	g varial a1 o	Ple and RHS -60M 2000	1 is the pivot
<i>a</i> ₁ is the va element	Basic var Z s ₁ a ₁	$\frac{x_{i}}{-M-100}$	minimal x ₂ -200 3 0	l ratio. ^s : 0 1 0	a_1 is the $\frac{s_2}{M}$ o	e leaving s ₃ o o o	g varial	RHS -60M 2000 60	1 is the pivot
<i>a</i> ₁ is the va element	Basic var Z s_1 s_3	x _i -M-100 2 1 0	minima x ₂ -200 3 0 1	s <u>.</u> 0 1 0	a_1 is the $\frac{s_2}{M}$	e leaving $\frac{s_3}{0}$ 0 0	g varial <u>a</u> 0 0 1 0	RHS -60M 2000 60 720	1 is the pivot
<i>a</i> ₁ is the va element	Basic var Z s_1 a_1 s_3	x : -M-100 2 1 0	minimal	s ₁ 0 1 0 0	a_1 is the $\frac{s_2}{M}$ o	e leaving s ₃ o o o 1	g varial <u>a</u> 1 0 0 1 0	RHS -60M 2000 60 720	1 is the pivot

			Ex	kam	ple	В				
				(())					
Iteration 1										
> Step 3: Ger	nerate N	ew Tabl	eau							
 Divide th 	e second	row (row	v i*) by 1	(the piv	ot eleme	ent) to ge	et the nev	v row i*		
	Basic var	<i>x</i> ₁	x 2	s 1	s 2	s 3	a ,	RHS		
	Z	-M-100	-200	0	М	0	0	-60M		
	<i>s</i> 1	2	3	1	0	0	o	2000		
	a ,	1	0	0	-1	0	1	60		
	s 3	0	1	0	0	1	0	720		
- Replace of	each non∙ [new [new	-pivot rov row 1] = row 3] =	v <i>i</i> with [curren [curren	[new rov t row 1] t row 3]	v i] = [cu – 2 [row – 0 [row	urrent ro 2] v 2]	w i] - [(A	_{ij*}) x (ro	w i*)]	
	-		-		-	-		DUC		
	Z	-M-100	-200	s ₁	5 2 M	s ₃	<i>u</i> ₁	-60M		
	<u>s</u> ,	0	3	1	2	0	-2	1880		
	a1	1	0	0	-1	0	1	60		
	s 3	0	1	0	0	1	о	720		
Operations Research © Broos Maenhout										76

Iteration	1								
> Step 3:	Generate	New T	ableau						
- Renla	ce the obje	ective re	w with						
- Repli	Ice the obje	w obi r	w = [cu	rrent of	ni row] –	- (-M-1	$(n) \times (row)$	o)]	
		ii obj i	011] – [eu	frent of	J1011]	. (00) A (100	-/]	_
	Basic var	<i>x</i> ₁	<i>x</i> ₂	<i>S</i> ₁	<i>S</i> ₂	s_3	<i>a</i> ₁	RHS	_
	Z	0	-200	0	-100	0	M+100	6000	_
	<i>S</i> ₁	0	3	1	2	0	-2	1880	
	<i>x</i> ₁	1	0	0	-1	0	1	60	
	<i>s</i> ₃	0	1	0	0	1	0	720	

Iteration a			Ex	an	nple	B				
Step 1: Det	ermine t	he En	itering Va	riahle						
> Step 1. Det	Basic var	x 1	x ₂	s ₁	s 2	s 3	a <u>1</u>	RHS]	
	Z	0	-200	0	-100	0	M+100	6000	-	
	<i>S</i> 1	0	3	1	2	0	-2	1880		
	<i>x</i> 1	1	0	0	-1	0	1	60		
	s 3	0	1	0	0	1	0	720		
x_2 is the va variable.	riable wi	ith the	e most neg	ative	value in	the ob	jective r	ow. <i>x</i> ₂ i	is the ente	ring
Operations Research © Broos Maenhout										78

			E۶	kam	ple	B			
 Iteration 2 Step 2: Det Take the 	termine	the Lea	ving Va	riable	and the n		numboni	n tha v	column
- Take the	Basic var		x ₂					RHS	
	<i>s</i> ₁ <i>x</i> ₁	0	3	1	2 -1	0 0	-2 1	1880 60	1880/3 = 626.66 MIN
s is the var	s₃ riable wi	o th the i	ninimal	o ratio	o s is the	1 leavin	o 9 variabl	720 e and 3	720/1 = 720
element		un une i		rutio.	5 ₁ 15 the	icuviii	g variabl	e una c	
	Basic var	<i>x</i> 1	x 2	<i>s</i> 1	s 2	<i>s</i> 3	a <u>1</u>	RHS	
	Z	0	-200	0	-100	0	M+100	6000	-
	<i>s</i> 1	0	3	1	2	0	-2	1880	
	<i>x</i> 1	1	0	0	-1	0	1	60	
	s 3	0	1	0	0	1	0	720	J
© Broos Maenhout									79

		Ez	xam	ple	B				
			()					
 Iteration 2 				J					
Step 3: Generate	New Tab	oleau							
- Divide the first 1	ow (row i	*) by 3 (t	he pivot	element) to get	the new r	ow i*		
Basic va	r x,	<i>x</i> ,	s.,	s	s .	а,	RHS		
Z	0	-200	0	-100	0	M+100	6000		
S 1	0	1	1/3	2/3	0	-2/3	1880/3		
x ,	1	0	0	-1	0	1	60		
s	0	1	0	0	1	0	720		
- Replace each no [ne [ne	n-pivot ro w row 2] : w row 3] :	w <i>i</i> with = [curren = [curren	[new rov it row 2] it row 3]	w i] = [cu – 0 [row – 1 [row	rrent ro 1]	ow i] - [(A	_{ij*}) x (rov	w i*)]	
Pi				- [-	DUG	1	
Basic va	r x ₁	x 2	S ₁	5 2 -100	\$ ₃	<i>d</i> ₁ M+100	6000		
L S.	0	-200	1/2	-100	0	-2/2	1880/3		
x,	1	0	0	-/ 3	o	-/ 5	60		
s3	о	0	-1/3	-2/3	1	2/3	280/3		
Operations Research									80
g) Broos Maenhout									

• Iteration 2 • Step 3: Generate New Tableau • Replace the objective row with: $[new obj row] = [current obj row] - [(-200) x (row 2)]$ $\frac{\boxed{basic var}{x_1} + x_2 + x_2 + x_3 + x_2 + x_3 + x_3 + x_3 + x_4 + x_5 +$		E	lxar	nple	e B				
Step 3: Generate New Tableau Replace the objective row with: $[new obj row] = [current obj row] - [(-200) x (row 2)]$ $\frac{\boxed{Basic var} \frac{x_1}{x_2} \frac{x_2}{0} \frac{s_1}{100/3} \frac{s_2}{0} \frac{s_3}{0} \frac{a_1}{100/3} \frac{RHS}{394000/3} \frac{RHS}{3} \frac{1}{x_1} \frac{1}{1} \frac{0}{0} \frac{0}{-11} \frac{1}{0} \frac{1}{10} \frac{60}{1} \frac{1}{2/3} \frac{280/3}{2}$ Since there are no negative numbers in the objective row, this tableau is optimal. The optimal solution is (x ₁ , x ₂ , s ₁ , s ₂ , s ₃ , a ₁) = (60, 1880/3, 0, 0, 280/3, 0) The optimal value of the objective function is 394 000/3.	Iteration 2								
- Replace the objective row with: $[new obj row] = [current obj row] - [(-200) x (row 2)]$ $\boxed{\frac{Basic var}{x_1} \frac{x_1}{x_2} \frac{s_1}{x_2} \frac{s_2}{x_3} \frac{s_3}{x_1} \frac{a_1}{x_2} \frac{RHS}{394000/3}}{\frac{x_2}{x_1} \frac{a_1}{x_1} \frac{1}{x_2} \frac{a_2}{x_3} \frac{a_1}{x_2} \frac{RHS}{x_1} \frac{1}{x_2} \frac{a_2}{x_3} \frac{a_1}{x_1} \frac{RHS}{x_2} \frac{1}{x_2} \frac{a_1}{x_1} \frac{a_2}{x_2} \frac{a_2}{x_2} \frac{a_1}{x_2} \frac{a_2}{x_3} \frac{a_1}{x_1} \frac{RHS}{x_2} \frac{a_2}{x_2} \frac{a_1}{x_1} \frac{a_2}{x_2} \frac{a_2}{x_2} \frac{a_1}{x_2} \frac{a_2}{x_2} $	Sten 2: Generate	te New Tableau							
$\begin{bmatrix} \text{new objective row with.} \\ \text{[new obj row]} = [\text{current obj row}] - [(-200) \text{ x (row 2)}] \\ \\ \hline $	Replace the ob	biective row with							
$ a x x y ^2 - c c c c c y - c c c y - c c c y - c c c y - c c c x y - c c c x y - c c c x y - c c c x y - c c c x y - c c c x y - c c x y - c c x y - c c x y - c c x y - c c x y - c x x - c x x - c x x x - c x x x - c x x x - c x x x x - c x x x x - c x x x x x x x x x x x $	- Replace the ob	[new obj row] = [cu	rrent ob	i row] _ [(-200)	v (row 2)	1		
Basic var x_1 x_2 s_1 s_2 s_3 a_1 RHS Z 0 0 200/3 100/3 0 M-100/3 394000/3 x_2 0 1 1/3 2/3 0 -2/3 1880/3 x_1 1 0 0 -1 0 1 60 s_3 0 0 -1/3 -2/3 1 2/3 280/3 > Since there are no negative numbers in the objective row, this tableau is optimal. - The optimal solution is $(x_1, x_2, s_1, s_2, s_3, a_1) = (60, 1880/3, 0, 0, 280/3, 0)$ - - The optimal value of the objective function is 394 000/3. - -		[new obj tow] – [cu	i ent obj	, 10w] - [(-200)	7 A (10W 2)			
Z 0 0 200/3 100/3 0 M-100/3 394000/3 x_2 0 1 1/3 2/3 0 -2/3 1880/3 x_1 1 0 0 -1 0 1 60 s_3 0 0 -1/3 -2/3 1 2/3 280/3 > Since there are no negative numbers in the objective row, this tableau is optimal. - The optimal solution is $(x_1, x_2, s_1, s_2, s_3, a_1) = (60, 1880/3, 0, 0, 280/3, 0)$ - - The optimal value of the objective function is 394 000/3.	Basic var	$x_1 x_2$	<i>S</i> ₁	S 2	s_3	<i>a</i> ₁	RHS		
x_2 0 1 1/3 2/3 0 -2/3 1880/3 x_1 1 0 0 -1 0 1 60 s_3 0 0 -1/3 -2/3 1 2/3 280/3 > Since there are no negative numbers in the objective row, this tableau is optimal. - The optimal solution is $(x_1, x_2, s_1, s_2, s_3, a_1) = (60, 1880/3, 0, 0, 280/3, 0)$ - The optimal value of the objective function is 394 000/3.	Z	0 0	200/3	100/3	0	M-100/3	394000/3		
x_1 1 0 0 -1 0 1 60 s_3 0 0 -1/3 -2/3 1 2/3 280/3 > Since there are no negative numbers in the objective row, this tableau is optimal. - The optimal solution is $(x_1, x_2, s_1, s_2, s_3, a_1) = (60, 1880/3, 0, 0, 280/3, 0)$ - The optimal value of the objective function is 394 000/3.	x 2	0 1	1/3	2/3	0	-2/3	1880/3		
s_3 00 $-1/3$ $-2/3$ 1 $2/3$ $280/3$ > Since there are no negative numbers in the objective row, this tableau is optimal The optimal solution is $(x_1, x_2, s_1, s_2, s_3, a_1) = (60, 1880/3, 0, 0, 280/3, 0)$ - The optimal value of the objective function is $394 000/3$.	<i>x</i> ₁	1 0	0	-1	0	1	60		
 Since there are no negative numbers in the objective row, this tableau is optimal. The optimal solution is (x₁, x₂, s₁, s₂, s₃, a₁) = (60, 1880/3, 0, 0, 280/3, 0) The optimal value of the objective function is 394 000/3. 	s 3	0 0	-1/3	-2/3	1	2/3	280/3		
	 Since there are 1 The optimal so The optimal va 	e no negative num solution is (x_1, x_2, s_i) value of the objectiv	ıbers in s ₂ , s ₃ , a ₁ e functio	the obj 1) = (60, 1 0n is 394	ective 1880/3 000/3	row, this , o, o, 280	s tableau is 0/3, 0)	optimal.	

Ex	ampl	e D:	Degenera	cy	
		()		
Mathematical Proble	m Formul	ation			
Maximize	$12 x_1 +$	12 $x_2 +$	10 <i>x</i> ₃		
subject to	$3 x_{1} +$	$2 x_2 +$	4 <i>x</i> ₃ ≤50		
	- <i>x</i> ₁ +	<i>x</i> ₂ -	$x_3 \ge 0$		
	<i>x</i> ¹ +		$x_3 \ge 0$		
	<i>x</i> ₁ ,	x_2 ,	$x_3 \ge 0$		
> Canonical Form					
Maximize	$12 x_1 +$	12 $x_2 +$	10 <i>x</i> ₃		
subject to	$3 x_{i} +$	$2 x_2 +$	$4x_3 + s_1$	= 50	
	<i>x</i> ₁ -	$x_2 +$	$x_3 + s_2$	= 0	
	- x ₁ -		$x_3 + s_3$	= 0	
	<i>x</i> ₁ ,	x_2 ,	$x_3, s_1, s_2, s_3 \ge 0$	0	
© Broos Maenhout					85

Example E	: Alternative Optimal Solution	.S
Mathematical Problematical Problematica	em Formulation	
Maximize	$3 x_1 + 2 x_2$	
subject to ≻ Canonical Form Maximize	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
subject to	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
Operations Research © Broos Maenhout		86

Exam	ple G: Infeasible Problem	
 Mathematical Probl 	lem Formulation	
Maximize	$2 x_1 + 6 x_2$	
subject to	$4x_1 + 3x_2 \leq 12$ $2x_1 + x_2 \geq 8$ $x_1 + x_2 \geq 0$	
> Canonical Form	$x_1, x_2 \geq 0$	
Maximize	$2 x_1 + 6 x_2 - Ma_2$	
subject to	$4 x_1 + 3 x_2 + s_1 = 12$ $2 x_1 + x_2 - s_2 + Ma_2 = 8$ $x_1, x_2, s_1, s_2, s_3 \ge 0$	
Operations Research © Broos Maenhout		88

Exam	ple H: Two-Phase Method	
Mathematical Probl	em Formulation	
> LP formulation		
Minimize	$2x_1 + 3x_2 + x_3$	
subject to	$x_1 + 4x_2 + 2x_3 \ge 8$	
·	$3x_1 + 2x_2 \ge 6$	
	$x_1, x_2, x_3 \geq 0$	
> Canonical Form (Bi	g M-method)	
Minimize	$2x_1 + 3x_2 + x_3 + Ma_1 + Ma_2$	
subject to	$x_1 + 4 x_2 + 2 x_3 - s_1 + a_1 = 8$	
	$3x_1 + 2x_2 - s_2 + a_2 = 6$	
	$x_1, x_2, x_3, s_1, s_2, a_1, a_2 \ge 0$	
Operations Research © Broos Maenhout		90

					. () .					
• Phase 1:	Iteratio	n 2								
> Step 2	: Determi	ine the	Leaving	g Varial	ole					
– Tak	e the ratio	betweer	the rig	nt hand s	side and	he posit	tive numl	oer in th	$e x_1 colu$	mn
	Basic var	х.	<i>x</i> .	<i>x</i> 2	s.	5	а.	a.	RHS]
	- Z	-5/2	0	1	-1/2	1	3/2	0	-2	
	x 2	1/4	1	1/2	-1/4	о	1/4	0	2	2/(1/4) = 8
	a 2	5/2	0	-1	1/2	-1	-1/2	1	2	2/(5/2) = 4/5 M
a_2 is the	1e variabl	e with	the min	imal ra	tio. a_2 is	s the le	aving va	riable a	and 5/2	is the pivot
eleme	nt Basic var	Υ.	<i>x</i> .	χ.	5.	8-	<i>a</i> .	<i>a</i> .	RHS	1
eleme	nt Basic var - Z	x 1 -5/2	<i>x</i> ₂	x ₃	<i>s</i> ₁ -1/2	<i>s</i> ₂	a ₁ 3/2	a 2 0	RHS	-
eleme	nt Basic var - Z	x 1 -5/2	x ₂ 0	x ₃ 1 1/2	$\frac{s_1}{-1/2}$	s ₂ 1 0	a <u>1</u> 3/2 1/4	a 2 0 0	RHS -2 2	

	Exa	amj	ple	H: 7	Гwo	-Ph	ase	Met	hod	
))				
• Phase	2: The II	nitial S	Simple	x Table	eau					
	Basic var	<i>x</i> ₁	x 2	x 3	<i>S</i> ₁	\$ 2	<i>a</i> ₁	a 2	RHS	1
	- Z	0	0	0	0	0	1	1	0	1
	x 2	0	1	3/5	-3/10	1/10	3/10	-1/10	9/5	
	<i>x</i> ₁	1	0	-2/5	1/5	-2/5	-1/5	2/5	4/5	
	Basic var	<i>x</i> ₁	x 2	x 3	<i>S</i> ₁	\$ 2			RHS]
	- Z	0	0	0	0	0			0	1
	<i>x</i> ₂	0	1	3/5	-3/10	1/10			9/5	
	<i>x</i> ₁	1	0	-2/5	1/5	-2/5			4/5	
> Sust	itute pha	se 2 ob	jective	function	n					
	Basic var	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>S</i> ₁	S 2			RHS]
	- Z	2	3	1	0	0			0]
	x 2	0	1	3/5	-3/10	1/10			9/5	
	<i>x</i> ₁	1	0	-2/5	1/5	-2/5			4/5	
perations Researc	h									

